翻訳と辞書
Words near each other
・ Free Poisson distribution
・ Free Polish
・ Free Polish University
・ Free Port Act
・ Free port of Ventspils
・ Free port of Vladivostok
・ Free Presbyterian Church
・ Free Presbyterian Church (Australia)
・ Free Presbyterian Church of North America
・ Free Presbyterian Church of Scotland
・ Free Presbyterian Church of Scotland in Zimbabwe
・ Free Presbyterian Church of Ulster
・ Free Presbyterian Church of Victoria
・ Free Presbyterian Church Synod of the United States
・ Free Presbyterian Church, Kalimpong
Free presentation
・ Free press
・ Free Press (magazine)
・ Free Press (organization)
・ Free Press (publisher)
・ Free Press Houston
・ Free Press of India
・ Free Press Summer Fest
・ Free preview
・ Free price system
・ Free Princes Movement
・ Free probability
・ Free produce movement
・ Free product
・ Free program


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Free presentation : ウィキペディア英語版
Free presentation
In algebra, a free presentation of a module ''M'' over a commutative ring ''R'' is an exact sequence of ''R''-modules:
:\bigoplus_ R \overset \to \bigoplus_ R \overset\to M \to 0.
Note ''g'' then maps each basis element to each generator of ''M''. In particular, if ''J'' is finite, then ''M'' is a finitely generated module. If ''I'' and ''J'' are finite sets, then the presentation is called a finite presentation; a module is called finitely presented if it admits a finite presentation.
A free presentation always exists: any module is a quotient of free module: F \overset\to M \to 0, but then the kernel of ''g'' is again a quotient of a free module: F' \overset \to \ker g \to 0. The combination of ''f'' and ''g'' is a free presentation of ''M''. Now, one can obviously keep "resolving" the kernels in this fashion; the result is called a free resolution. Thus, a free presentation is the early part of the free resolution.
A presentation is useful for computaion. For example, since tensoring is right-exact, tensoring the above presentation with a module, say, ''N'' gives:
: \bigoplus_ N \overset \to \bigoplus_ N \to M \otimes_R N \to 0.
This says that M \otimes_R N is the cokernel of f \otimes 1. If ''N'' is an ''R''-algebra, then this is the presentation of the ''N''-module M \otimes_R N; that is, the presentation extends under base extension.
For left-exact functors, there is for example
Proof: Applying ''F'' to a finite presentation R^ \to R^ \to M results in
:0 \to F(M) \to F(R^) \to F(R^)
and the same for ''G''. Now apply the snake lemma. \square
== See also ==

*coherent module
*quasi-coherent sheaf
*Fitting ideal
*finitely-related module

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Free presentation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.